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Chapter 1

Introduction

1.1 Over-View

There exist many Control Algorithms today , and It depends on the application

what control algorithm to use. PID controller is unarguably is widely used, but

also possess many challenges in designing. To overcome these challenges and design

Controllers for aviation application, optimization-based control techniques are most

preferred, like MPC controller. Vertical Takeoff and Landing Aircraft possess the

quality of both of a helicopter fixed-wing aircraft dynamics. It is challenging to

design a controller for such aircraft because it has hybrid dynamics consisting of

hover dynamics, transitional dynamics, and fixed-wing dynamics.Designing a PID

controller in such cases is far more difficult than a MPC controller , and therefore

ofter MPC controller is used in such cases. MPC controller have few issues as well ,

Its performance rely on the availability of an accurate predictive model and design

choices like weights and cost function . Un accurate or poor design choice can

degrade the performance of the controller. Therefore To increase the performance of

the controller We investigate the ways to combine MPC controller with online/offline

learning based technique to design a better controller. This project investigate how

1



Chapter 1. Introduction 2

to design such Learning-Based MPC controller in fixed wing Dynamics region of a

VTOL.

1.2 Literature Survey

There is five flight profile for VTOL aircraft, Each one of them has different dy-

namics (Yuksek et al., 2016) , namely hover dynamics like a helicopter, fixed-wing

dynamics(Yuksek et al., 2016), and transitional dynamics(Yuksek et al., 2016). Aero-

dynamic forces that will act on these three dynamics are also different, and there

are different ways to calculate them. One way to model the vehicle in CAD and

then apply and observe its aerodynamic effects over a simulation.Ozdemir et al.

(2014). Another Way is to model the forces acting from first principle (ie from new-

ton law of physics , fluid dynamics)(Govdeli et al., 2019). In this Project, I have

used the first principle, previous data to model the Forces torques and Dynamics

for VTOL in MATLAB. There are so many ways to design controllers for VTOL;

unarguably PID controller is widely used, and we can also use the PID controller

here. (ref:pid-wikipedia). Designing the PID controller is tiresome and requires a

lot of effort when designing the controller for a large system like VTOL. There is a

method known as successive loop control (uavBook chapter 6), widely used in aerial

vehicle control. Nevertheless, despite the success of PID controller, we have a lot of

drawbacks also in it some of them are: 1.When we have to design the controller with

multiple constraints; designing becomes tedious. 2.Tuning the hyper parameters to

match the desired performance is tedious, and required a lot of knowledge from Ve-

hicle dynamics. To overcome these challenges and outperform the PID controller’s

performance, we have used the Linear MPC controller (ref:Stanislaw H. Żak -PID

lecture). This controller is based on optimization. In this type of controller, we

aimed to minimize some cost. The designing of this cost is crucial as its hyper pa-

rameters affects the performance. MPC controller is very robust to noises , but has

some drawbacks too, This controller depends on the Prediction Model of the System

https://en.wikipedia.org/wiki/PID_controller
https://uavbook.byu.edu/doku.php?id=start#lecture_material
https://engineering.purdue.edu/~zak/ECE680/MPC_handout.pdf
https://engineering.purdue.edu/~zak/ECE680/MPC_handout.pdf
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. It is very Important to correctly design this prediction model . Learning Based

Controller (Hewing et al., 2020) overcome this challenge by learning the Prediction

Model online , while controlling the aircraft ,of-course we have to provide initial

guess of the prediction model. This type of controller is also some times also known

as Model Based Reinforcement learning.



Chapter 2

VTOL dynamics

2.1 VTOL flight profile

Following figure shows different flight profile of Figure 2.1 VTOL :

Figure 2.1: flight profile (Hewing et al., 2020)

• Hovering ; Behave like a Helicopter

• Transition

• Fixed wing Dynamics Behave as a Fixed wing UAV

4
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2.2 Kinematics Equation

Aircraft State Variables There is 12 states variable for an aircraft that has

been taken into consideration in this Thesis .Following Figure Figure 2.2 taken from

”Beard and McLain,Small Unmanned Aircraft,Chap 3” shows these 12 states Vari-

able. Out of these 12, 5 states Variables has been taken into consideration as a

Figure 2.2: Aircraft State Variables

longitudinal State Variables , These are (u,w, q, θ, pd)

Equation of Motion The six-degree-of-freedom , 12 state model for the UAV

kinematics and dynamics are summarized as follows Figure 2.3, and detailed expla-

nation and derivation is given in ”Beard McLain,Small Unmanned Aircraft,Chap

3”.

In these Equations (u,v,w) are the speed of UAV in Body frame of refrence ,

(pn, pe, pd) are defined in Inertial frame of reference (fx, fy, fz) are the forces ex-

perience by UAV in body frame of reference , (l,m,n) are the torque experienced by

UAV in (xb, yb, zb) body axis respectively .
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Figure 2.3: Kinematics Equation

2.3 Forces And Moments

In the Figure 2.3 we have mentioned (fx, fy, fz) and (l,m,n) . In this section we will

compute the these force and moment vector for a particular type of VTOL.

TURAC VTOL UAV In this Thesis I chose TURAC VTOL Figure 2.4 for

designing the controller and further study because of the available detailed study of

its forces,moments, aerodynamic properties.

Forces on TURAC The Figure 2.5 shows the Total forces and Moments on

TURAC VTOL

Forces along x-axis:

Fx = FX
T + FAx −mg sin(θ)

F x
T = (Tf1 + Tf2) cos it

where it corresponds to the tilt angle of two front rotors

FAx = F fs
Ax + Fwake

Ax

F fs
Ax = Cfs

x q̃
fs(A− 2 ∗ As)
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Figure 2.4: TURAC VTOL (Ozdemir et al., 2014)

Figure 2.5: Forces and Moments on TURAC VTOL (Yuksek et al., 2016)

Cfs
x = −Cfs

D cosα + Cfs
L sinα

Cfs
L = [CLo + CLαα + CLqc ∗ q/(2 ∗ Va) + CLδeδe]

Cfs
D = [CDo + CDαα + CDqc ∗ q/(2 ∗ Va) + CDδeδe]

Fwake
Ax

= 1/2 ∗ ρ ∗ V 2
T ∗ As ∗ Cwake

x

Cwake
x = −Cwake

D cosαeff + Cwake
L sinαeff

αeff is the effective angle of attack

Cwake
L = [CLo + CLαeffαeff + CLqc ∗ q/(2 ∗ Va) + CLδeδe]

Cwake
D = [CDo + CDαeffαeff + CDqc ∗ q/(2 ∗ Va) + CDδeδe]

Forces along Y- axis

Fy = F y
T + FAy
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F y
T = 0

Fy = F fs
Ay + Fwake

Ay

F fs
Ay = Cfs

y q̃
fs(A− 2 ∗ As)

Fwake
AY

= 1/2 ∗ ρ ∗ V 2
T ∗ As ∗ Cwake

Y

whereC∗Y = C∗Yββ + C∗Yδaδa + C∗Yδr δr + b∗/(2 ∗ V∞) ∗ (C∗Ypp+ C∗Yrr) + CY o

Forces along z-axis

Fz = F z
T + FAz + (FGz))

F z
T = −(Tf1 + Tf1)sin(it)− (Tc1 + Tc2)

FAz = F fs
Az + Fwake

Az

F fs
Az = Cfs

z q̃
fs(A− 2 ∗ As)

Fwake
Az

= 1/2 ∗ ρ ∗ V 2
T ∗ As ∗ Cwake

z

Cfs
x = −Cfs

D cosα + Cfs
L sinα

Cwake
x = −Cwake

D cosαeff + Cwake
L sinαeff

q̃fs = 1/2 ∗ ρ ∗ V 2
∞

where F∗ denote forces . The subscript A and T stand for aerodynamic and thrust

components, respectively. Aerodynamic forces are composed of free-stream forces/-

moments and ones generated on the propeller wake regions. C∗x is defined as aero-

dynamic force coefficients . Tf∗ denotes the thrust force by Two front rotors. Tc∗

denotes thrust force by coaxial rotors . C∗D, C
∗
L denotes the lift coefficient and drag

coefficient respectively

Moments The Figure 2.6 shows the Total Moments and geometric dimension on

TURAC VTOL

roll moment L = LT + LA

LA = LfsB + LwakeB

LT denotes moment due to thrust forces: = (Tf1 − Tf2) cos it sin τ

Lfsb = Cfs
l q̃

fs(A− 2 ∗ As) ∗ b

LwakeB = 1/2 ∗ ρ ∗ V 2
T ∗ As ∗ Cwake

l
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Figure 2.6: Moment and geometric dimension (Yuksek et al., 2016)

whereCfs
l = Cfs

lβ
β + Cfs

lδa
δa + Cfs

lδr
δr + bfs/(2 ∗ V∞) ∗ (Cfs

lp
p+ Cfs

lr
r) + Clo

yaw moment L = NT +NA

NA = N fs
B +Nwake

B

NT denotes moment due to thrust forces: = (−Df1 +Df2 −Dc1 +Dc2)

D∗ Denotes the Drag moment

N fs
b = Cfs

n q̃
fs(A− 2 ∗ As) ∗ b

Nwake
B = 1/2 ∗ ρ ∗ V 2

T ∗ As ∗ Cwake
n

whereCfs
n = Cfs

nβ
β + Cfs

nδa
δa + Cfs

nδr
δr + bfs/(2 ∗ V∞) ∗ (Cfs

npp+ Cfs
nr r) + Cno

pitch moment: M = MT +MA

MA = M fs
B +Mwake

B

MT denotes moment due to thrust forces: = (Tf1 +Tf2) sin (it)l1 cos τ − (Tc1 +Tc2)l2

M fs
b = Cfs

m q̃
fs(A− 2 ∗ As) ∗ c̃

Mwake
B = 1/2 ∗ ρ ∗ V 2

T ∗ As ∗ Cwake
m

whereCfs
m = Cfs

mαα + Cfs
mδa

δa + Cfs
mδr

δr + cfs/(2 ∗ V∞) ∗ (Cfs
mqq) + Cmo

Aerodynamic forces and moments exerted on the UAV are function of total airflow

vector, VT .VT is composed of V∞ which is free Airstream velocity generated by

translation motion . Second component is Vout is the propeller induced airflow.

These are related as :
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Figure 2.7: Open loop Simulation

VT =
√

(Voutξ sin (α + it))2 + (Voutξ sin (α + it) + V∞)2

Vin = (V∞ ∗ cosα cos (it) + Vout)/2

where Vin is the intake airflow velocity

Vout =
√

(V∞ cos (α) cos (it))2 + ((Tf1 + Tf2)/(ρ ∗ π ∗R2
p))

where Rp is the radius of the propeller.

Once we derived the dynamics and Equation of Motions we will assume this as

True non linear Model of the VTOL. To check the correctness of the derived

equation , few Open loop simulations of the VTOL has been run in the python.

The Figure 2.7 shows one of the such response of the aircraft when elevator angle is

changed from 0deg to −10deg. In graph we can observe that aircraft response repre-

sented by green color is making an ascent when elevator is changing from 0 to -10 .

Thus we can say Aircraft is behaving correctly for change in elevator inputs.
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2.4 Trim Condition and Linearized Dynamics

Trim point is simply a operating point (system states, control) at which a system

is operating,For example A straight level flight. A Equilibrium point is sometime

confused with trim point.A equilibrium point is the system operating point at which

the net force on the system is zero.

Equilibrium point ⊂ Trim point

A straight level flight which means a Aircaft flying at a Constant height with a

constant horizontal speed is also a Equilibrium point.

In this Thesis I have used MATLAB trim function to get the system states at trim

condition .

To obtain the states and input at trim point , first a Simulink file has been designed

as shown in Figure A.1 .This file shows the relationship between the change in in-

puts ( elevator anglw,aileron ,rudder , thrust force) to the change in output (Va,α,β).

Force and Moments is a functional Block which represent the forces and moments

on TURAC as discussed in section 2.3. After calculating the Force and Moments

on VTOL the Vector [F,M] is passed to the dynamics block which represent VTOL

kinematics Equation to get the next states.

This file is then sent to trim function of MATLAB to obtain the states and inputs

at trim condition. A script has is designed to set the desired condition for Trim and

then pass it to the Trim function as shown in Figure A.2

Trim condition for level flight ( flying at a constant Altitude)

• Va desired Airspeed =25m/s

• γ (gamma) desired flight path angle =0

• R (desired Radius) = ∞ for a level flight
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Figure 2.8: States and control Input at Trim point

• -pd = ho = 100m desired Altitude

Figure 2.8 shows the obtained Trim states (pn, pd, u, v, w, ψ, θ, φ, p, q, r) and input

(aileron, elevator,rudder,front rotor-1 Thrust force,front rotor-2 Thrust force,coaxial

rotor-1 Thrust force, coaxial rotor-2 Thrust force) A function has been designed in

MATLAB to get the system Continuous State Space model at obtained Trim

state . This state space model has been further divided to get Longitudinal and

Transitional State space model. Further Eigen Values of system MATRIX has been

obtained to verify the correctness of obtained state Space Model.
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In thesis I will focus on designing controller to control the Longitudinal States there-

fore And lateral dynamics is being controlled by general PID controller.

Relation Between continuous Non linear model Vs State Space model

ẋ = ftrue−model(x, u)

(x∗, u∗)←− trim states and inputs

Linearizing Around Trim point

ẋ− ẋ∗ =
df(x∗, u∗)

dx
(x− x∗) +

df(x∗, u∗)

du
(u− u∗)

x∗ =0 ie We are not changing Trim conditions therefore Constant Trim State

then we define ,
df(x∗, u∗)

dx
= A and

df(x∗, u∗)

du
= B Therefore We get,

ẋ = A(x - x∗ ) + B(u - u∗ ) as a Linearized system in a state space format. The

obtained State Space Model will act like a predictive Model in Our MPC controller

designed for Longitudinal dynamics controller [Chapter-3].



Chapter 3

Model Predictive Control

3.1 Introduction

Model Predictive Control which is also known by Receding Horizon Control ( RHC),

Generalized Predictive Control (GPC)..

(ref:wikipedia-MPC) MPC is based on iterative, finite-horizon optimization of a

plant model. At time t the current plant state is sampled and a cost minimizing

control strategy is computed (via a numerical minimization algorithm) for a rela-

tively short time horizon in the future: [t, t+ T ]. Specifically, an online or on-the-fly

calculation is used to explore state trajectories that emanate from the current state

and find a cost-minimizing control strategy until time [t+ T ] . Only the first step of

Figure 3.1: Receding Horizon Control Concept (ref:EE392m - Spring 2005 mpc
lecture)

14
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https://web.stanford.edu/class/archive/ee/ee392m/ee392m.1056/Lecture14_MPC.pdf
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the control strategy is implemented, then the plant state is sampled again and the

calculations are repeated starting from the new current state, yielding a new control

and new predicted state path.

The prediction horizon keeps being shifted forward and for this reason MPC is also

called receding horizon control Figure 3.1.

• At each time step, compute control by solving an openloop optimization prob-

lem for the prediction horizon

• Apply the first value of the computed control sequence

• At the next time step, get the system state and re-compute

Simple Algorithm can be written as :

J∗(x(t)) =minimize
{uk}N−1

k=0

N−1∑
k=0

(l(xk, uk))

subject to x0 = x(t)

for k=0,1........,N-1:

xk+1 = f(xk, uk)

xk ∈ X

uk ∈ U

In above formulation state X is 5 dimensional longitudinal state space where

x1 = u (x-axis Air speed)

x2 = w(z-axis Air speed)

x3 = q (rate of change of pitch)

x4 = θ (pitch Angle in radian)

x5 = h (Height of the Aircraft)

And U is 3 dimensional control space where
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u1 = elevator Angle in radian

u2 = Tf1

u3 = Tf2

where Tf∗ represent the Thrust force generated by front rotors.

Cost function l(xk, uk)) is known as a cost function ,In this thesis I chose

quadratic cost in the form of

Wx(Xdesired −X)2 +Wu ∗ (U)

The first term Wx(Xdesired −X)2 forces the system to reach to the desired States ,

and second term Wu ∗ (U) make sure that the control effort should be small .

Wx and Wu are the Weights and typically a design Parameter and indicates how

much importance we give to each of the chosen performance matrix .

These weights are found by various methods , In this thesis initially they are found

by hit and trial method and later in chapter-4 I have explored the automated meth-

ods to find these weights.

Predictive Model of the System xk+1 = f(xk, uk)

f(xk, uk) is the Approximate Model of the System that we get through Analysis

or through Any other Measurement technique. In this thesis I have used Linear

longitudinal State Space Model (discussed in Previous chapter) around the Trim

States as a Approximate longitudinal dynamics of VTOL aircraft.

We know from chapter-2 that ,linear continuous State space around the Trim con-

dition x∗ and u∗ has the following form

ẋ = A(x - x∗ ) + B(u - u∗ )

and (y − y∗) = C(x - x∗ )

C= I5x ( I is identity Matrix of Oder 5)

Above two equation is in Continuous time , to discretize it and to get the equation

in the form of
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xk+1 = Ã(xk − x∗) + B̃(uk − u∗) , where xk+1 is the the next state around the trim

(x∗) state, I will use Runge Kutta 4th order discretization method .

3.2 Runge-kutta Integration Method :

Overview Following figure shows the discretizing the continous time model through

RK4 method:

Figure 3.2: RK4 discretization (Worthmann et al., 2016)
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Figure 3.3: Linear MPC control (ref:Stanislaw H. Żak -PID lecture)

Discretizing State Space in Python Code Following code shown in Fig-

ure A.3 has been developed in Python to discretize the Continuous State Space

Model through RK4 :

3.3 Linear MPC control

Introduction Linear Model Predictive Control is a variant of model predictive

control (MPC) that is characterized by the use of linear system models in the pre-

diction.

In last section I mentioned that I have used the longitudinal linear-state space sys-

tem as a predictive model of the VTOL . This linearized model has been found out

around the trim condition which in this case is the condition of aircraft in fixed wing

region and flying at a constant Height. I have developed the Linear MPC controller

to track the desired Height.

CASADI CASADi is an open-source tool for nonlinear optimization and algorith-

mic differentiation. It facilitates rapid and efficient — implementation of different

https://engineering.purdue.edu/~zak/ECE680/MPC_handout.pdf
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methods for numerical optimal control. I have used CASADI as an optimizer to

solve the minimization problem shown in section 3.1.

The Following Figure A.4 shows the code snippet developed in python to solve the

minimization problem shown in section 3.1 as a non linear Optimization problem.

Here fxdot is a function representing ẋ = A(x) + B(u )
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Result Following Figure 3.4 is a graph from a simulation showing the Aircraft

(red color) is able to track desired height. In this case suitable weight has been

found by hit and trial method.

weights = ([1.0, 0.01, 0.5, 2.001, 5.0, 4.00, 0.001, 0.001])

First five weights elements are for state error minimization and next third weights

elements are of small control effort.

Figure 3.4: Linear MPC control showing that air Craft is tracking the desired
Height



Chapter 4

Learning Based MPC

4.1 Introduction :

Learning-based MPC addresses the automated and data-driven generation or adap-

tation of elements of the MPC formulation such that the control performance with

respect to the desired closed-loop system behavior is improved.(Hewing et al., 2020)

The setup in which this learning takes place can be diverse. For instance, offline

learning considers the adaptation of the controller between different trials or episodes

of a control task, during which data are collected. In methods that learn online, on

the other hand, the controller is adjusted during closed-loop operation ( while per-

forming repetitive tasks) or using the data collected during one task execution. While

much of the research in learning-based MPC is focusing on automatically improving

the model quality, which is the most obvious component affecting MPC performance,

several research efforts are addressing the formulation of the MPC problem directly

or utilizing the MPC concept to satisfy constraints during learning-based control.

In this Thesis I have focused on second Category for learning and improving the

Performance:

• Learning the system dynamics that we can use as a better predictive model

21
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• Learning the controller design,learning better Weights,constraints ,cost func-

tion

4.2 Learning MPC weights

Introduction To learn the weights I have designed the algorithm by modifying

the Deep deterministic policy Gradient method (Lillicrap et al., 2019) which is a

Reinforcement learning Method to learn the policy. Here policy simply refers to the

what action agent should take at a particular state.

Algorithm Algorithm 1 shown below has been developed for learning Actor func-

tion µ. After the learning process the optimal weights can be obtained simply by

arg maxµ().

The developed algorithm consider MPC weight as an continuous-action aw which

is then explored by the DDPG algorithm. Actor function µ() defines what action

should take at a particular state. Critic function Q() defines how good is it to take

the action aw in a state.

Actor first issues the action aw given initial state s1 and current parameters θ, In this

thesis I have fixed the initial state for all the episode to the trim state obtained in

chapter-2. Obtained aw used as an Weight for MPC to obtain set of optimal actions

which then applied to the system to get the next-state reward and if terminal state

is reached. This process is repeated till terminal state has been reached and finally

a tuple of (initial state, Weights,total Reward ,Terminal State) is stored in a buffer

for training of Critic newt work.

Next two Steps are Similar to the Original DDPG algorithm where Critic and Actor

network is updated.
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Algorithm 1 Weight Search through Deep Deterministic Policy Gradient Algorithm

Randomly initialize critic network Q(s, aw|θQ) and actor µ(s|θµ) with weights θQ

and θµ.
Initialize target network Q′ and µ′ with weights θQ

′ ← θQ,θµ
′ ← θµ

Initialize replay buffer B
for episode = 1,M do

Initialize a random process N for action exploration
Receive initial observation state s1
Select aw = µ(s1|θµ) +N according to the current policy and exploration noise
W← aw
do

Use Weight Matrix W to estimate optimal action sequence U
(H)
t

execute first action ut from selected sequence U
(H)
t

(st+1, rt+1, done)←F truemodel(st, ut)
R← rt + γrt+1

While(∼ done)
R ← R/T (normalizing the total Reward by the total no of time steps in a episode)
Store(si1, a

i
w,Ri, siT ) in B

Sample a random mini-batch of N transitions (si1, a
i
w,R, siT ) from B

Set yi =Ri

Update the critic by minimizing the Loss :

L =
1

N

N∑
i=1

(yi −Q(si1, a
i
w|θQ))2

Update the actor policy using the sampled policy gradient:

∇θµJ ≈ 1
N

N∑
i=1

∇awQ(s, aw|θQ)|s=si1,aw=µ(si1)∇θµµ(s|θµ)|si1
Update the target networks: θQ

′ ← τθQ + (1− τ)θQ
′
; θµ

′ ← τθu + (1− τ)θµ
′

end for = 0

Terminal States Two conditions are assessed to determine if a state is terminal:

0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:• If time steps remaining tR = 0, the state is terminal

• if the magnitude of the altitude error exceeds a critical value, |eh| ¿ eh,max ,

the state is terminal

The maximum permitted altitude deviation was set to eh,max = 20-30 meter.
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Reward function A reward function will be constructed that encodes the fol-

lowing behaviour:

• Track the aircraft altitude from current height h to the target altitude hT ,

such that eh = h-hT = 0

A simple reward function the encodes the desired mentioned behaviour can designed

as rt = (1− |eh|) such that when |eh| is zero reward obtained become maximum .

However it has been found that it is advantageous to provide agents rewards nor-

malised in e.g. in range [0,1] to improve the stability of neural network convergence

(?).

Therefore Normalised error terms has been used, The normalised error ē is calcu-

lated by:

ē =

|ē|
k

1 +
|ē|
k

Scaling factor k can be considered as at what absolute error value do I consider

agent’s work to be half complete.

Reward at time t is therefore

rt = 1− ēt

which is always bounded in (0,1).

Simulation Result The following graphs is obtained for the following parameters

• M =1000 episodes

• learning rates = 0.0005 for both actor and critic

• S1 = (h=100meter,Va = 25 m/s)
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• hdesired = 105 meter

The weights and total Reward obtained corresponding to the graph Figure 4.1 is

[2.55460801, 2.49933617, 2.52168748, 2.69877644, 2.59287848, 2.58079338, 2.50337014, 2.54272376]”

reward =0.49121906413479727

The weights and total Reward obtained corresponding to the graph Figure 4.2 is

Figure 4.1: Simulation Result Corresponding to the Weights obtained on 1st
episode run

[0.30611667, 5.02722512, 4.83456607, 4.81023379,

4.95270451,−0.11439833, 5.15594659, 4.95798248] reward = 0.617883149112560

On a closer look between 0.2 to 0.4 in first graph It is noticeable that the Aircraft

is only able to reach little more than 103 meter. In second graph we observe that

Aircraft is able to reach little more than 104 meter.

Average reward has also been plotted in Figure 4.3 which shows that average score/re-

ward is increasing as agent traverses through more number of episodes , which clearly
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Figure 4.2: Simulation Result Corresponding to the best reward

shows that agent is learning and parameters of Actor network is shifting towards

the region which guarantee better results and Reward.

Scope for further Improvement The learning can be further improved by

taking into consideration the following points:

• Very Naive Reward function has been used . The simulation is behaving

according to the defined Reward function which is to minimize the (|hcurrent−

hdesired|) error.Further Reward term corresponding to fast tracking , minimum

control effort , small steady state error can be added to improve the learning

and hence to obtain the better Weights.
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Figure 4.3: Average Reward for past 100 episodes

• In this Thesis I have used the Same value of hyper parameter like Number

of episodes learning rate , γ and similar NN architecture as defined in Orig-

inal DDPG paper. These hyper parameter can be better tuned to for our

application.
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Appendix A

Figure A.1: Simulink file for Calculating Trim states

28
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Figure A.2: MATLAB function to Calculate Trim states
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Figure A.3: State Space discretization in Python

Figure A.4: Formulating minimization Problem in CASADI
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